Block Sparse Compressed Sensing of Electroencephalogram (EEG) Signals by Exploiting Linear and Non-Linear Dependencies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Sparse Compressed Sensing of Electroencephalogram (EEG) Signals by Exploiting Linear and Non-Linear Dependencies

This paper proposes a compressive sensing (CS) method for multi-channel electroencephalogram (EEG) signals in Wireless Body Area Network (WBAN) applications, where the battery life of sensors is limited. For the single EEG channel case, known as the single measurement vector (SMV) problem, the Block Sparse Bayesian Learning-BO (BSBL-BO) method has been shown to yield good results. This method e...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Quasi-linear Compressed Sensing

Inspired by significant real-life applications, in particular, sparse phase retrieval and sparse pulsation frequency detection in Asteroseismology, we investigate a general framework for compressed sensing, where the measurements are quasi-linear. We formulate natural generalizations of the well-known Restricted Isometry Property (RIP) towards nonlinear measurements, which allow us to prove bot...

متن کامل

Compressed sensing of block-sparse positive vectors

In this paper we revisit one of the classical problems of compressed sensing. Namely, we consider linear under-determined systems with sparse solutions. A substantial success in mathematical characterization of an l1 optimization technique typically used for solving such systems has been achieved during the last decade. Seminal works [4, 18] showed that the l1 can recover a so-called linear spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2016

ISSN: 1424-8220

DOI: 10.3390/s16020201